Geografia artificiale, geni e mutuo appoggio

  • Giancarlo Macchi Janica University of Siena
  • Massimiliano Grava University of Pisa

Abstract

I multi-agenti rappresentano oggi uno dei principali metodi per la validazione o confutazione di ipotesi o modelli complessi. Nell’ambito di diversi settori disciplinari, le teorie sulla vita artificiale (intesa come partecipazione o dinamiche di ecosistemi digitali) hanno ulteriormente rafforzato la struttura epistemologica e gli obiettivi della ricerca. Per la geografia, i multi-agenti rappresentano un metodo che consente – fra le tante altre cose – di produrre teorie sulla relazione intrinseca tra spazio, organismi ed ecosistemi. All’interno di questa cornice di riferimento, l’esperienza di ricerca descritta in queste pagine ha visto la definizione dei principi fondamentali di un modello di tipo vegetale che mira principalmente a produrre elementi utili alla riflessione sui rapporti tra organismi e spazio. Nel tentativo di produrre evidenze utili al dibattito sul gene egoista, il modello digitale ha messo in luce come la “vita” sia piuttosto caratterizzata da processi di collaborazione, mutua partecipazione e beneficio reciproco, come correttamente suggerito da Kropotkin. Una delle acquisizioni più importanti maturate con questo studio è quella dell’identificazione degli effetti significativi di condizionamento esercitato dallo spazio sulle dinamiche delle forme di vita. Si tratta di osservazioni che consentono di ipotizzare in modo speculativo la nozione di spazio o geografia artificiale.

References

Ackley, David, and Michael Littman. 1991. Interactions between learning and evolution. Artificial Life II, SFI Studies in the Sciences of Complexity 10, 487–509.

Ackley, Dave. H. 2000. Real artificial life: Where we may be. In Bedau Mark A., John S. McCaskill, Norman Packard, and Steen Rasmussen (eds.), Artificial Life VII (Proceedings of the Seventh International Conference on Artificial Life), Cambridge (MA): The MIT Press, pp. 487–496.

Ackley Ddavid H. 2013. NMCS4ALL: Artificial Life (full version), video lecture. https://goo.gl/GUeB5Y

Amblard, Frédéric, Eric Daudé, Benoît Gaudou, Arnaud Grignard, Guillaume Hutzler, Christophe Lang, Nicolas Marilleau, Jean Marc Nicod, David Sheeren, and Patrick Taillandier. 2015. Introduction to NetLogo. In Banos, Arnaud, Christophe Lang and Nicolas Marilleau (eds.) Agent–Based Spatial Simulation with NetLogo, Amsterdam: Elsevier, pp. 75–123.

An, Li, Marc Linderman, Jiaguo Qi, Ashton Shortridge, and Jianguo Liu. 2005. Exploring complexity in a human–environment system: An agent–based spatial model for multidisciplinary and multiscale integration. Annals of the Association of American Geographers 95(1), 54–79.

An, Li, Marc Linderman, Jiaguo Qi, Ashton Shortridge, and Jianguo Liu. 2016. Exploring complexity in a human–environment system: An agent–based spatial model for multidisciplinary and multiscale integration, Annals of the association of American geographers 95(1), 54–79.

Barricelli, Nils Aall. 1962. Numerical testing of evolution theories – Part I Theoretical introduction and basic tests. Acta Biotheoretica 16(1–2), 69–98.

Batty, Michael. 2012. A generic framework for computational spatial modelling. In Heppenstall, Alison J., Andrew T. Crooks, Linda M. See and Michael Batty (eds.), Agent–Based Models of Geographical Systems. London: Springer, pp. 19–50.

Bedau, Mark A. 2007. Artificial Life , in Matthen, Mohan and Christopher Stephens (eds) Philosophy of Biology. Amsterdam: Elsevier, pp. 585–603.

Benenson, Itzhak, and Paul M Torrens. 2005. Geographic Automata Systems: A New Paradigm for Integrating GIS and Geographic Simulation. International Journal of Geographical Information Science 19(4), 385–412.

Von Bertalanffy, Ludwig. 1968. General System Theory. New York: Georg. Braziller.

Birkin, Mark, and Belinda Wu. 2012. A review of microsimulation and hybrid agent–based approaches. In Heppenstall, Alison J., Andrew T. Crooks, Linda M. See and Michael Batty (eds.), Agent–Based Models of Geographical Systems. London: Springer, pp. 51–68.

Boden, Maggie. 2001. Life and Cognition. Society 357, 267–72.

Borges, J. Luis, 1984, Del rigore della scieza, in L’artefice. In Borges tutte le Opere vol I. Milano: Mondadori, p. 1253.

Bostrom, N. 2003. Are You Living n a Computer Simulation? Phylosophycal Quarterly 53(211), 243–55.

Brenner, Thomas. 2006. Agent Learning Representation: Advice on Modelling Economic Learning. In Tesfatsion, Leigh and Judd Kenneth (eds.), Handbook of Computational Economics. Amsterdam: Elsevier, pp. 895–947.

Cleland, Carol E, and Christopher F Chyba. 2002. Defining ‘Life’. Origins of life and evolution of the biosphere 32(4), 387–93.

Clifford, NJ. 2008. Models in geography revisited. Geoforum 39(2), 675–86.

Corson, Nathalie, and Damien Olivier. 2015. Dynamical Systems with NetLogo. In Banos, Arnaud, Christophe Lang and Nicolas Marilleau (eds.) Agent–Based Spatial Simulation with NetLogo, Amsterdam: Elsevier, pp. 183–221.

Crooks, Andrew T, and Alison J Heppenstall. 2012. Introduction to agent–based modelling. In Heppenstall, Alison J., Andrew T. Crooks, Linda M. See and Michael Batty (eds.), Agent–Based Models of Geographical Systems. London: Springer, pp. 85–105.

Daude, Eric. 2010. Multi–Agent Systems for Simulation in Geography: Moving Towards an Artificial Geography. In Guermond Yves (ed.) The Modeling Process in Geography: From Determinism to Complexity, Hoboken NJ: Willey, pp. 309–34.

Dawid, Herbert, and L Tesfatsion and KL Judd. 2006. Chapter 25 Agent–based Models of Innovation and Technological Change. In Tesfatsion, Leigh and Judd Kenneth (eds.), Handbook of Computational Economics. Amsterdam: Elsevier, pp. 1235–72.

Dawkins, Richard. 1976. The selfish gene. Oxford: Oxford University Press.

Elsdon–Baker, Fern. 2009. The Dawkins dogma. New Scientist. https://doi.org/10.1016/S0262–4079(09)61894–7

Emery, Alan. 1990. The Selfish Gene. Journal of medical genetics 27(5), p. 342–343.

Epstein, Joshua M. 2012. Growing Artificial Societies – Social Science from the Bottom Up. Engineering Geology 3(1), 81–87.

Giełda–Pinas, Katarzyna, Piotr Dzieszko, Zbigniew Zwoliński, and Arika Ligmann–Zielińska. 2015. Two strategies of agent–based modelling application for management of lakeland landscapes at a regional scale. Quaestiones Geographicae 34(3), 33–50.

Goodwin, James M. 1998. The Meaning of Life – Real and/or Artificial BT. In Tosiyasu L Kunii and Annie Luciani (eds.), Cyberworlds. Tokyo: Springer Japan, pp. 43–65.

Hargrove, William W, and James D Westervelt. 2012. An implementation of the pathway analysis through habitat (PATH) algorithm using NetLogo. In Westervelt, James D. and Gordon Cohen (eds.) Ecologist–Developed Spatially Explicit Dynamic Landscape Models. London: Springer, pp. 211–22.

Heath, Brian, and Raymond Hill. 2010. Some insights into the emergence of agent–based modelling. Journal of Simulation 4(3), 163–69.

Heppenstall, Alison, Nick Malleson, and Andrew Crooks. 2016. “Space, the Final Frontier”: How Good are Agent–Based Models at Simulating Individuals and Space in Cities? Systems 4(1), 1–9.

Iltanen, Sanna. 2012. Cellular automata in urban spatial modelling. In Heppenstall, Alison J., Andrew T. Crooks, Linda M. See and Michael Batty (eds.), Agent–Based Models of Geographical Systems. London: Springer, pp. 69–84.

Kropotkin, Peter. 1902. Mutual Aid: A Factor of Evolution. New York: McClure Phillips & co.

Li, Xia, Xun Shi, Jinqiang He, and Xaioping Liu. 2011. Coupling simulation and optimization to solve planning problems in a fast–developing area. Annals of the Association of American Geographers 101(5), 1032–48.

Manson, Steven M, Shipeng Sun, and Dudley Bonsal. 2012. Agent–Based Modeling and Complexity BT. In Heppenstall, Alison J., Andrew T. Crooks, Linda M. See and Michael Batty (eds.), Agent–Based Models of Geographical Systems. London: Springer, pp. 125–39.

Margolis, E, and S Laurence. 2007. The ontology of concepts – abstract objects or mental representations? . Noûs 41(4), 561–93.

Margulis, Lynn and Dorion Sagan, What is Life, Berkeley: University of California Press.

Mason, Steven M, Shiping Sun, and Dudley Bonsal. 2012. Agent–based modeling and complexity. In Heppenstall, Alison J., Andrew T. Crooks, Linda M. See and Michael Batty (eds.), Agent–Based Models of Geographical Systems. London: Springer, pp. 125–39.

May, Robert M. 1976. Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–67.

Michod, Richard E, Aurora M Nedelcu, and Denis Roze. 2003. Cooperation and conflict in the evolution of individuality. Biosystems 69(2–3), 95–114.

Moreno, Alvaro. 2002. Artificial Life and Philosophy. Leonardo 35, 401–5.

Nehaniv, CL, J Hewitt, Bruce Christianson, and P Wernick. 2006. What Software Evolution and Biological Evolution Don’t Have in Common. In Second International IEEE Workshop on Software Evolvability 2006. Washington: IEEE, pp. 58–65.

Packer, Heather S, Nicholas Gibbins, and Nicholas R Jennings. 2009. Ontology evolution through agent collaboration. Brain 132(3), 820–824.

Parker, Dawn C, Daniel G Brown, Tatiana Filatova, Rick Riolo, Derek T Robinson, and Shipeng Sun. 2012. Do land markets matter? A modeling ontology and experimental design to test the effects of land markets for an agent–based model of ex–urban residential land–use change. In Heppenstall, Alison J., Andrew T. Crooks, Linda M. See and Michael Batty (eds.), Agent–Based Models of Geographical Systems. London: Springer, pp. 525–42.

Parry, Hazel R, and Mike Bithell. 2012. Large scale agent–based modelling: A review and guidelines for model scaling. In Heppenstall, Alison J., Andrew T. Crooks, Linda M. See and Michael Batty (eds.), Agent–Based Models of Geographical Systems. London: Springer, pp. 271–308.

Rand, W, D Brown, R Riolo, and Robinson D. 2005. Toward a graphical ABM toolkit with GIS integration. In Macal C.M., D. Sallach and M.J. North (eds.) Proceedings of the Agent 2005 Conference on Generative Social Processes, Models and Mechanisms, Chicago: University of Chicago, 27–42.

Sánchez–Maroño, N, A Alonso–Betanzos, O Fontenla–Romero, J Gary Polhill, and T Craig. 2017. Empirically–derived behavioral rules in agent–based models using decision trees learned from questionnaire data. In Alonso Betanzos, Amparo, Noelia Sánchez–Maroño, Oscar Fontenla–Romero, J. Gary Polhill, Tony Craig, Javier Bajo, Juan Manuel Corchado. Agent–Based Modeling of Sustainable Behaviors. London: Springer, pp. 53–76.

Sarkar, Sahotra. 1991. What Is Life? Revisited. BioScience 41(9), 631–34.

Schaller, RR. 1997. Moore’s law: past, present and future. Spectrum – IEEE 34(6), 52–59.

Schrodinger, Erwin. 1967. What is life? The Physical Aspect of the Living Cell. Cambridge: Cambridge Press.

Sober, Elliott. 1991. Learning from functionalism: Prospects for strong artificial life. In Bedau Mark A., Carol E. Cleland (eds) The Nature of Life: Classical and Contemporary Perspectives from Philosophy and Science. Cambridge: Cambridge University Press, pp. 225–35.

Spafford, Eugene H. 1994. Computer Viruses as Artificial Life. Artificial Life 1(3), 249–65.

Stanilov, Kiril. 2012. Space in agent–based models. In Heppenstall, Alison J., Andrew T. Crooks, Linda M. See and Michael Batty (eds.), Agent–Based Models of Geographical Systems. London: Springer, pp. 253–69.

Sterelny, Kim. 1999. Dawkins’ Bulldog . Philosophy and Phenomenological Research 59(1), 255–62.

Sterelny, Kim. 2001. Dawkins vs. Gould: Survival of the Fittest. London: Icon Books.

Tang, Wenwu, and David A Bennett. 2010. The explicit representation of context in agent–based models of complex adaptive spatial systems. Annals of the Association of American Geographers 100(5), 1128–55.

Tsekeris, Theodore, and Klimis Vogiatzoglou. 2011. Spatial agent–based modeling of household and firm location with endogenous transport costs. NETNOMICS – Economic Research and Electronic Networking 12(2), 77–98.

Turing, Alan. 1950. Turing. Computing machinery and intelligence. Mind 59(236), 433–60.

Venkataraman, S, and Nicholas Dew. 2017. Intel Corporate Venturing. Darden Business Publishing Cases 1(1), 1–8.

Wilensky, Uri, and William Rand. 2015. An Introduction to Agent–Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. Massachusetts MA: The MIT Press.

Wilkins Adam S. 2002. The Evolution of Developmental Pathways, Sunderland (MA): Sinauer Associates.

Wilson, Allan G. 2002. Complex Spatial Systems: Challenges for Modellers . Mathematical and Computer Modelling 36, 379–87.
Published
2019-07-08
How to Cite
Macchi Janica, Giancarlo, and Massimiliano Grava. 2019. “Geografia Artificiale, Geni E Mutuo Appoggio”. ACME: An International Journal for Critical Geographies 18 (3), 782-802. https://acme-journal.org/index.php/acme/article/view/1753.
Section
Research